We study cut finite element discretizations of a Darcy interface problem based on the mixed finite element pairs $\textbf{RT}_0\times Q_0$, $\textbf{BDM}_1\times Q_0$, and $\textbf{RT}_1\times Q_1$. Here $Q_k$ is the space of discontinuous polynomial functions of degree k, $\textbf{RT}_k$ is the Raviart-Thomas space, and $\textbf{BDM}_k$ is the Brezzi-Douglas-Marini space. We show that the standard ghost penalty stabilization, often added in the weak forms of cut finite element methods for stability and control of the condition number of the resulting linear system matrix, destroys the divergence-free property of the considered element pairs. Therefore, we propose two corrections to the standard stabilization strategy; using macro-elements and new stabilization terms for the pressure. By decomposing the computational mesh into macro-elements and applying ghost penalty terms only on interior edges of macro-elements, stabilization is active only where needed. By modifying the standard stabilization terms for the pressure we recover the optimal approximation of the divergence without losing control of the condition number of the linear system matrix. We derive a priori error estimates for the unfitted finite element discretization with the new stabilization terms. Numerical experiments indicate that with the new method we have 1) optimal rates of convergence of the approximate velocity and pressure; 2) well-posed linear systems where the condition number of the system matrix scales as for fitted finite element discretizations; 3) optimal rates of convergence of the approximate divergence with pointwise divergence-free approximations of solenoidal velocity fields. All three properties hold independently of how the interface is positioned relative the computational mesh.
翻译:一种保持分歧的有限元切割方法用于Darcy流体问题
翻译后的摘要:
我们研究基于混合有限元对$\textbf{RT}_0\times Q_0$、$\textbf{BDM}_1\times Q_0$和$\textbf{RT}_1\times Q_1$的切割有限元离散Darcy界面问题。这里$Q_k$是$k$次不连续多项式函数的空间,$\textbf{RT}_k$是Raviart-Thomas空间,$\textbf{BDM}_k$是Brezzi-Douglas-Marini空间。我们发现,标准的幽灵罚款稳定,通常加在切割有限元方法的弱形式中以保证稳定性和线性系统矩阵条件数的控制,其会破坏所考虑的元素对的无散性。因此,我们提出了两种修正标准稳定策略的方法:使用宏单元和压力的新稳定项。通过将计算网格分解为宏单元并仅在宏单元内部边上应用幽灵罚款项,稳定仅在需要的地方起作用。通过修改压力的标准稳定项,我们恢复了分歧的最佳逼近,同时不失控制线性系统矩阵条件数的能力。我们为新稳定项的非匹配有限元离散化导出先验误差估计。数值实验表明,采用新方法,我们具有以下三个特点:1)近似速度和压力的最优收敛速率;2)良好的线性系统,其中系统矩阵的条件数与匹配有限元离散化相同;3)分离型速度场的分点无散逼近的最优收敛速率。这三个特点独立于界面相对于计算网格的位置。