In this paper, we observe an interesting phenomenon for a hybridizable discontinuous Galerkin (HDG) method for eigenvalue problems. Specifically, using the same finite element method, we may achieve both upper and lower eigenvalue bounds simultaneously, simply by the fine tuning of the stabilization parameter. Based on this observation, a high accuracy algorithm for computing eigenvalues is designed to yield higher convergence rate at a lower computational cost. Meanwhile, we demonstrate that certain type of HDG methods can only provide upper bounds. As a by-product, the asymptotic upper bound property of the Brezzi-Douglas-Marini mixed finite element is also established. Numerical results supporting our theory are given.
翻译:暂无翻译