Due to the excessive cost of large-scale language model pre-training, considerable efforts have been made to train BERT progressively -- start from an inferior but low-cost model and gradually grow the model to increase the computational complexity. Our objective is to advance the understanding of Transformer growth and discover principles that guide progressive training. First, we find that similar to network architecture search, Transformer growth also favors compound scaling. Specifically, while existing methods only conduct network growth in a single dimension, we observe that it is beneficial to use compound growth operators and balance multiple dimensions (e.g., depth, width, and input length of the model). Moreover, we explore alternative growth operators in each dimension via controlled comparison to give operator selection practical guidance. In light of our analyses, the proposed method speeds up BERT pre-training by 73.6% and 82.2% for the base and large models respectively, while achieving comparable performances


翻译:由于大规模语言模型培训前费用过高,已经为逐步培训BERT付出了相当大的努力 -- -- 从低劣但低成本的模式开始,逐步发展模型,以增加计算的复杂性。我们的目标是增进对变异器增长的了解,并发现指导渐进培训的原则。首先,我们发现与网络结构搜索相似的,变异器增长也有利于复合规模的扩大。具体地说,虽然现有方法只在一个单一层面进行网络增长,但我们认为,使用复合增长操作员和平衡多个层面(例如该模型的深度、宽度和输入长度)是有益的。此外,我们探索每个层面的替代增长操作员,通过有控制的比较,为操作员选择提供实用的指导。根据我们的分析,拟议方法使BERT的预培训分别加快了73.6%和82.2%,同时实现可比较的业绩。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
30+阅读 · 2021年7月30日
最新《Transformers模型》教程,64页ppt
专知会员服务
311+阅读 · 2020年11月26日
专知会员服务
16+阅读 · 2020年7月27日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transformer中的相对位置编码
AINLP
5+阅读 · 2020年11月28日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年9月10日
Arxiv
103+阅读 · 2021年6月8日
VIP会员
相关VIP内容
专知会员服务
30+阅读 · 2021年7月30日
最新《Transformers模型》教程,64页ppt
专知会员服务
311+阅读 · 2020年11月26日
专知会员服务
16+阅读 · 2020年7月27日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Transformer中的相对位置编码
AINLP
5+阅读 · 2020年11月28日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员