A Graph Convolutional Network (GCN) stacks several layers and in each layer performs a PROPagation operation (PROP) and a TRANsformation operation (TRAN) for learning node representations over graph-structured data. Though powerful, GCNs tend to suffer performance drop when the model gets deep. Previous works focus on PROPs to study and mitigate this issue, but the role of TRANs is barely investigated. In this work, we study performance degradation of GCNs by experimentally examining how stacking only TRANs or PROPs works. We find that TRANs contribute significantly, or even more than PROPs, to declining performance, and moreover that they tend to amplify node-wise feature variance in GCNs, causing variance inflammation that we identify as a key factor for causing performance drop. Motivated by such observations, we propose a variance-controlling technique termed Node Normalization (NodeNorm), which scales each node's features using its own standard deviation. Experimental results validate the effectiveness of NodeNorm on addressing performance degradation of GCNs. Specifically, it enables deep GCNs to outperform shallow ones in cases where deep models are needed, and to achieve comparable results with shallow ones on 6 benchmark datasets. NodeNorm is a generic plug-in and can well generalize to other GNN architectures. Code is publicly available at https://github.com/miafei/NodeNorm.


翻译:图表革命网络(GCN) 堆叠了几层, 每层中都有几层, 每层中都有几层, 我们通过实验研究堆叠TRAN或PROP的特性如何起作用, 研究GCN的性能退化。 我们发现TRAN对在图形结构化数据中学习节点表示作用有显著或甚至超过TRAN, 而且它们往往会放大GCN的节点特征差异, 造成差异炎热, 我们确定这是造成性能下降的关键因素。 我们受这种观察的驱使, 我们提出了一种差异控制技术, 名为Node 正常化( NodeNorm), 使用自己的标准偏差来测量每个节点的特性。 我们发现TRANN对降低性能作用有很大的帮助, 甚至比PROP还大, 而且它们往往会放大GCN的节点特征差异, 造成差异性能差异, 我们确定这是导致性能下降的关键因素。 我们建议一种名为Node- 正常化(NodeNorm) 的技术, 使用自己的标准偏差来测量每个节点特征特征。 实验结果验证NONM在GCNPER在深度通用模型中处理性降解, 在深度的常规模型中, 的深度模型中, 无法进行更深的模型中, 直基质化数据到比。

1
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2021年6月30日
【斯坦福CS329S】机器学习系统设计导论,92页ppt
专知会员服务
39+阅读 · 2021年1月19日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
182+阅读 · 2020年4月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
已删除
将门创投
8+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
4+阅读 · 2020年9月28日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Self-Attention Graph Pooling
Arxiv
5+阅读 · 2019年4月17日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
29+阅读 · 2018年4月6日
Arxiv
7+阅读 · 2018年1月10日
Arxiv
5+阅读 · 2017年9月8日
VIP会员
相关VIP内容
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
已删除
将门创投
8+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
4+阅读 · 2020年9月28日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Self-Attention Graph Pooling
Arxiv
5+阅读 · 2019年4月17日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
29+阅读 · 2018年4月6日
Arxiv
7+阅读 · 2018年1月10日
Arxiv
5+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员