We prove that any two-pass graph streaming algorithm for the $s$-$t$ reachability problem in $n$-vertex directed graphs requires near-quadratic space of $n^{2-o(1)}$ bits. As a corollary, we also obtain near-quadratic space lower bounds for several other fundamental problems including maximum bipartite matching and (approximate) shortest path in undirected graphs. Our results collectively imply that a wide range of graph problems admit essentially no non-trivial streaming algorithm even when two passes over the input is allowed. Prior to our work, such impossibility results were only known for single-pass streaming algorithms, and the best two-pass lower bounds only ruled out $o(n^{7/6})$ space algorithms, leaving open a large gap between (trivial) upper bounds and lower bounds.


翻译:我们证明了任何在$n$个顶点的有向图中用于$s$-$t$可达性问题的双通量图流算法都需要几乎二次的空间$n^{2-o(1)}$位。作为推论,我们还得到了许多其他基本问题的几乎二次空间下限,包括二分匹配和无向图中的(近似)最短路径。我们的结果共同意味着各种图问题很难有任何非平凡的流式算法,即使允许对输入进行两次传递。在我们的工作之前,这种不可能性结果只适用于单次流式算法,并且最好的双向流式下限仅排除了$o(n^{7/6})$空间算法,这留下了一个大的空白区域,介于(平凡的)上限和下限之间。

0
下载
关闭预览

相关内容

Graph Transformer近期进展
专知会员服务
61+阅读 · 2023年1月5日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
22+阅读 · 2021年4月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月31日
VIP会员
相关VIP内容
Graph Transformer近期进展
专知会员服务
61+阅读 · 2023年1月5日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
22+阅读 · 2021年4月10日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员