Urban Air Mobility, the scenario where hundreds of manned and Unmanned Aircraft System (UAS) carry out a wide variety of missions (e.g. moving humans and goods within the city), is gaining acceptance as a transportation solution of the future. One of the key requirements for this to happen is safely managing the air traffic in these urban airspaces. Due to the expected density of the airspace, this requires fast autonomous solutions that can be deployed online. We propose Learning-'N-Flying (LNF) a multi-UAS Collision Avoidance (CA) framework. It is decentralized, works on-the-fly and allows autonomous UAS managed by different operators to safely carry out complex missions, represented using Signal Temporal Logic, in a shared airspace. We initially formulate the problem of predictive collision avoidance for two UAS as a mixed-integer linear program, and show that it is intractable to solve online. Instead, we first develop Learning-to-Fly (L2F) by combining: a) learning-based decision-making, and b) decentralized convex optimization-based control. LNF extends L2F to cases where there are more than two UAS on a collision path. Through extensive simulations, we show that our method can run online (computation time in the order of milliseconds), and under certain assumptions has failure rates of less than 1% in the worst-case, improving to near 0% in more relaxed operations. We show the applicability of our scheme to a wide variety of settings through multiple case studies.
翻译:城市空中流动是数以百计的载人和无人驾驶飞机系统(UAS)执行各种任务(例如,在城市内移动人和货物)的情景,这一情景正逐渐被接受为未来运输的解决办法。 实现这一局面的关键要求之一是安全管理这些城市空域的空中交通。 由于空域的预期密度,这需要可在线部署的快速自主解决方案。 我们提出“学习-N-Fly(LNF)”(LNF)多用户和无人驾驶飞机碰撞避免(CA)框架。这个框架是分散化的,在空中工作,并允许不同运营者管理的自主的UAS(UAS)安全地执行复杂的任务,在共享空域使用Signal-Temoral逻辑进行。我们最初提出的一个关键要求之一是安全地管理这些城市空域的空中交通流通。由于空域的预期密度,这需要快速自主的解决方案可以在网上部署。我们首先开发“学习-Fly(L2F)多功能交流(L2F)”(L2F)框架。这个框架是分散的、在空中操作的分散式优化控制。LNF2F(CUF)的分散化、L2FL2F)系统在最差(UNF)操作中将一个比UF)更大规模的频率的模拟的系统系统系统在比我们更短的模拟中显示更短路段的频率的频率上显示更短路段。我们通过两个案例。我们更短的模拟的系统。我们通过的模拟的模拟的模拟的系统在较短的系统,在较短的模拟的系统,在进行。在较短的模拟的模拟的系统,在较短路段中,在较短路段中可以显示更短路段。