Widespread development of driverless vehicles has led to the formation of autonomous racing, where technological development is accelerated by the high speeds and competitive environment of motorsport. A particular challenge for an autonomous vehicle is that of identifying a target trajectory - or in the case of a racing car, the racing line. Many existing approaches to finding the racing line are either not time-optimal solutions, or are computationally expensive, thus rendering them unsuitable for real-time application using on-board processing hardware. This study describes a machine learning approach to generating an accurate prediction of the racing line in real-time on desktop processing hardware. The proposed algorithm is a feed-forward neural network, trained using a dataset comprising racing lines for a large number of circuits calculated via a traditional optimal control lap time simulation. The network predicts the racing line with a mean absolute error of +/-0.27m, meaning that the accuracy outperforms a human driver, and is comparable to autonomous vehicle control subsystems. The approach generates predictions within 33ms, making it over 9,000 times faster than traditional methods of finding the optimal trajectory. Results suggest that data-driven approaches to find near-optimal racing lines may be favourable to traditional computational methods.


翻译:无驾驶车辆的广泛开发导致了自动赛车的形成,而这种赛车的高速和竞技环境加速了技术发展。对自主车来说,一个特别的挑战就是确定目标轨迹,或者赛车赛车的赛道。许多现有的赛线寻找方法不是时间最理想的解决方案,或者计算成本昂贵,因此它们不适合使用机载处理硬件进行实时应用。这项研究描述了一种机器学习方法,以便准确预测台式处理硬件的实时赛线。提议的算法是一个进料前神经网络,培训使用一套数据集,其中包括通过传统最佳控制时间模拟计算的大量电路的赛线。网络预测赛线的绝对误差为+/-0.27m,这意味着精确度超过人的驱动力,可与自动车辆控制子系统相比。这种方法在33米内产生预测,比寻找最佳轨迹的传统方法要快9 000多倍以上。结果显示,数据驱动方法可能有利于近视轨距。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月12日
Arxiv
4+阅读 · 2021年4月13日
Arxiv
5+阅读 · 2021年2月8日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员