The applications of additive codes mainly lie in quantum error correction and quantum computing. Due to their applications in quantum codes, additive codes have grown in importance. In addition to this, additive codes allow the implementation of a variety of dualities. The article begins by developing the properties of Additive Complementary Dual (ACD) codes with respect to arbitrary dualities over finite abelian groups. Further, we calculate precisely the total number of dualities over finite fields and introduce a new class of non-symmetric dualities, denoted as class A. Two conditions have been obtained, one is necessary and sufficient condition and other is a necessary condition. The necessary and sufficient condition is for an additive code to be an ACD code over arbitrary dualities, along with an algorithm for determining whether an additive code is an ACD code or not. The necessary condition is on the generator matrix of an ACD code for any duality belonging to the class A. We provide bounds for the highest possible distance of ACD codes over finite fields. Finally, we examine non-symmetric dualities over F4.


翻译:加性码的应用主要在量子误差纠正和量子计算中。由于其在量子码中的应用,加性码变得越来越重要。此外,加性码允许实现各种对偶性。本文首先开发了关于有限阿贝尔群任意对偶性的加性互补对偶码(ACD码)的性质。进一步地,我们精确计算了有限域上的总对偶数,并引入了一类新的非对称对偶性,表示为类A。我们得到了两个方程,一个是必要充分条件,另一个是必要条件。必要充分条件是关于加性码在任意对偶性上的ACD码,并提供了一个算法来确定一个加性码是否为ACD码。必要条件是ACD码的生成矩阵对于任何属于类A的对偶性。我们为有限域上ACD代码的最高可能距离提供了界限。最后,我们研究了F4上的非对称对偶性。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
67+阅读 · 2022年9月30日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
23+阅读 · 2021年3月4日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关VIP内容
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
67+阅读 · 2022年9月30日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员