This paper develops a novel slip estimator using the invariant observer design theory and Disturbance Observer (DOB). The proposed state estimator for mobile robots is fully proprioceptive and combines data from an inertial measurement unit and body velocity within a Right Invariant Extended Kalman Filter (RI-EKF). By embedding the slip velocity into $\mathrm{SE}_3(3)$ Lie group, the developed DOB-based RI-EKF provides real-time accurate velocity and slip velocity estimates on different terrains. Experimental results using a Husky wheeled robot confirm the mathematical derivations and show better performance than a standard RI-EKF baseline. Open source software is available for download and reproducing the presented results.
翻译:本文利用变化中观察家设计理论和扰动观察(DOB)开发了一个新的滑动估计器。 拟议的移动机器人国家估计器是完全自动的,并且将惯性测量单位和体速数据结合到右变化中扩展卡尔曼过滤器(RI-EKF)中。 通过将滑动速度嵌入 $\ mathrm{SE%3(3)美元 Lie Group, 发达的 DOB 以 RI-EKF 为基地的, 提供了不同地形的实时准确速度和滑动速度估计。 使用 Husky 轮式机器人的实验结果证实了数学推算结果, 并显示比 RI- EKF 标准基线更好的性能。 开放源软件可用于下载和复制所提出的结果。