Recently deep neural networks (DNNs) have achieved tremendous success for object detection in overhead (e.g., satellite) imagery. One ongoing challenge however is the acquisition of training data, due to high costs of obtaining satellite imagery and annotating objects in it. In this work we present a simple approach - termed Synthetic object IMPLantation (SIMPL) - to easily and rapidly generate large quantities of synthetic overhead training data for custom target objects. We demonstrate the effectiveness of using SIMPL synthetic imagery for training DNNs in zero-shot scenarios where no real imagery is available; and few-shot learning scenarios, where limited real-world imagery is available. We also conduct experiments to study the sensitivity of SIMPL's effectiveness to some key design parameters, providing users for insights when designing synthetic imagery for custom objects. We release a software implementation of our SIMPL approach so that others can build upon it, or use it for their own custom problems.
翻译:最近深心神经网络(DNN)在间接图像(例如卫星)中发现物体方面取得了巨大成功,但目前的一个挑战是获取培训数据,因为获取卫星图像和其中说明物体的费用很高。在这项工作中,我们提出了一个简单的方法,称为合成物体IMPL(合成物体IMPL),为定制目标物体容易和迅速地生成大量合成间接费用培训数据。我们展示了使用SIMPL合成图像在没有真实图像的零发场景中培训DIMNs(没有真实图像的场景)的有效性;以及一些短片学习场景,在现实世界图像有限的情况下提供。我们还进行了实验,以研究SIMPL对一些关键设计参数的敏感性,为用户在为定制物体设计合成图像时提供洞察力。我们发布了SIMPL(S)方法的软件应用,以便其他人能够利用它,或用它解决自己的习惯问题。