In lifelong learning systems based on artificial neural networks, one of the biggest obstacles is the inability to retain old knowledge as new information is encountered. This phenomenon is known as catastrophic forgetting. In this paper, we propose a new kind of connectionist architecture, the Sequential Neural Coding Network, that is robust to forgetting when learning from streams of data points and, unlike networks of today, does not learn via the popular back-propagation of errors. Grounded in the neurocognitive theory of predictive processing, our model adapts synapses in a biologically-plausible fashion while another neural system learns to direct and control this cortex-like structure by mimicking some of task-executive control functionality of the basal ganglia. In our experiments, we demonstrate that our self-organizing system experiences significantly less forgetting compared to standard neural models, outperforming a swath of previously proposed methods, including rehearsal/data buffer-based methods, on both standard (SplitMNIST, Split Fashion MNIST, etc.) and custom benchmarks even though it is trained in a stream-like fashion. Our work offers evidence that emulating mechanisms in real neuronal systems, e.g., local learning, lateral competition, can yield new directions for tackling the grand challenge of lifelong machine learning.
翻译:在以人工神经网络为基础的终身学习系统中,最大的障碍之一是无法保留旧知识,因为新信息会遇到新的信息。这一现象被称为灾难性的遗忘。在本文中,我们提出一种新的连接型结构,即序列神经编码网络,在从数据点流中学习时能够忘却,与今天的网络不同,它不会通过流行的后反向错误分析学习。基于预测处理的神经认知理论,我们的模型以生物可视的方式调整神经突触,而另一个神经系统则通过模拟火箭联动的一些任务-执行控制功能,来指导和控制这种类似皮层的结构。在我们的实验中,我们证明我们的自组织系统在与标准神经模型相比,大大减少忘却,比以往提出的方法(包括演练/数据缓冲方法)的一丝不苟。我们的工作可以提供大量的证据,在两种标准(SlitMNIST、Slip Fashinon MNIST等)和定制基准中,尽管它正在以流式的神经终身学习方式对系统进行训练,但是我们的工作可以证明我们自己的系统不会忘记与标准的神经模型。