In Ethereum, the ledger exchanges messages along an underlying Peer-to-Peer (P2P) network to reach consistency. Understanding the underlying network topology of Ethereum is crucial for network optimization, security and scalability. However, the accurate discovery of Ethereum network topology is non-trivial due to its deliberately designed security mechanism. Consequently, existing measuring schemes cannot accurately infer the Ethereum network topology with a low cost. To address this challenge, we propose the Distributed Ethereum Network Analyzer (DEthna) tool, which can accurately and efficiently measure the Ethereum network topology. In DEthna, a novel parallel measurement model is proposed that can generate marked transactions to infer link connections based on the transaction replacement and propagation mechanism in Ethereum. Moreover, a workload offloading scheme is designed so that DEthna can be deployed on multiple distributed probing nodes so as to measure a large-scale Ethereum network at a low cost. We run DEthna on Goerli (the most popular Ethereum test network) to evaluate its capability in discovering network topology. The experimental results demonstrate that DEthna significantly outperforms the state-of-the-art baselines. Based on DEthna, we further analyze characteristics of the Ethereum network revealing that there exist more than 50% low-degree Ethereum nodes that weaken the network robustness.
翻译:暂无翻译