A fundamental problem in phase retrieval is to reconstruct an unknown signal from a set of magnitude-only measurements. In this work we introduce three novel quotient intensity-based models (QIMs) based a deep modification of the traditional intensity-based models. A remarkable feature of the new loss functions is that the corresponding geometric landscape is benign under the optimal sampling complexity. When the measurements $ a_i\in \Rn$ are Gaussian random vectors and the number of measurements $m\ge Cn$, the QIMs admit no spurious local minimizers with high probability, i.e., the target solution $ x$ is the unique global minimizer (up to a global phase) and the loss function has a negative directional curvature around each saddle point. Such benign geometric landscape allows the gradient descent methods to find the global solution $x$ (up to a global phase) without spectral initialization.
翻译:阶段检索中的一个基本问题是从一组量度测量中重建一个未知信号。 在这项工作中,我们引入了三个基于传统强度模型深度修改的新商数密度基模型(QIMs ) 。 新的损失功能的一个显著特征是相应的几何景观在最佳取样复杂度下是无害的。 当a_i_in\Rn$的测量是高斯随机矢量和测量数量$m\ge Cn$时, QIMs承认没有高概率的虚假本地最小化器, 也就是说, 目标解决方案x$是独特的全球最小化器( 直至全球阶段), 而损失函数则在每一个支撑点周围有一个负向曲线。 这种良性的几何景观使得梯度下降方法能够在没有光谱初始化的情况下找到全球溶液$x( 直至全球阶段) 。