The paper presents a scalable approach for learning spatially distributed visual representations over individual tokens and a holistic instance representation simultaneously. We use self-attention blocks to represent spatially distributed tokens, followed by cross-attention blocks to aggregate the holistic image instance. The core of the approach is the use of extremely large token masking (75\%-90\%) as the data augmentation for supervision. Our model, named ExtreMA, follows the plain BYOL approach where the instance representation from the unmasked subset is trained to predict that from the intact input. Instead of encouraging invariance across inputs, the model is required to capture informative variations in an image. The paper makes three contributions: 1) It presents random masking as a strong and computationally efficient data augmentation for siamese representation learning. 2) With multiple sampling per instance, extreme masking greatly speeds up learning and improves performance with more data. 3) ExtreMA obtains stronger linear probing performance than masked modeling methods, and better transfer performance than prior contrastive models.


翻译:本文展示了一种可扩展的方法,用于学习单个符号上空间分布的视觉表现和同时的整体实例表现。 我们使用自我注意区块来代表空间分布的符号,然后是交叉注意区块来汇总整体图像实例。 这种方法的核心是使用极大型象征性遮罩(75<unk> -90<unk> )作为数据增强监督的数据。 我们的模型叫做ExtreMA, 遵循平原 BYOL 方法, 由未涂色子组进行实例表现训练, 以预测完整输入的功能。 模型不是鼓励输入之间的差异, 而是需要用模型来捕捉图像中的信息变异。 本文做出三项贡献:(1) 随机遮罩作为用于结构代表学习的强大和计算效率高的数据增强。 (2) 通过多次取样, 极端遮盖了学习速度,用更多数据改进了性能。 (3) ExtreMA 获得比前对比模型更好的传输性能更强的直线探测性工作。</s>

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员