Visual representation of data like charts and tables can be challenging to understand for readers. Previous work showed that combining visualisations with text can improve the communication of insights in static contexts, but little is known about interactive ones. In this work we present an NLG chatbot that processes natural language queries and provides insights through a combination of charts and text. We apply it to nutrition, a domain communication quality is critical. Through crowd-sourced evaluation we compare the informativeness of our chatbot against traditional, static diet-apps. We find that the conversational context significantly improved users' understanding of dietary data in various tasks, and that users considered the chatbot as more useful and quick to use than traditional apps.
翻译:图表和表格等数据的视觉表现对读者来说可能很难理解。 先前的工作表明,视觉和文本相结合可以改善静态环境中的洞察力交流,但互动环境中的洞察力却鲜为人知。 在这项工作中,我们提出了一个NLG聊天室,处理自然语言查询,通过图表和文本的组合提供洞察力。我们将其应用于营养,一个域通信质量至关重要。通过多方联动的评价,我们比较了我们聊天室的丰富性与传统、静态饮食应用。我们发现,谈话环境极大地提高了用户对不同任务中饮食数据的理解,用户认为聊天室比传统应用程序更有用,使用得更快。