Transformer-based language model approaches to automated story generation currently provide state-of-the-art results. However, they still suffer from plot incoherence when generating narratives over time, and critically lack basic commonsense reasoning. Furthermore, existing methods generally focus only on single-character stories, or fail to track characters at all. To improve the coherence of generated narratives and to expand the scope of character-centric narrative generation, we introduce Commonsense-inference Augmented neural StoryTelling (CAST), a framework for introducing commonsense reasoning into the generation process while modeling the interaction between multiple characters. We find that our CAST method produces significantly more coherent and on-topic two-character stories, outperforming baselines in dimensions including plot plausibility and staying on topic. We also show how the CAST method can be used to further train language models that generate more coherent stories and reduce computation cost.


翻译:以变换语言为基础的自动化故事生成模式目前提供了最新的结果。然而,在一段时间内生成描述时,它们仍然受到图谋不一致的影响,而且严重缺乏基本的常识推理。此外,现有方法一般只侧重于单字符故事,或者根本没有跟踪字符。为了提高生成的叙事的一致性和扩大以性为中心的叙事生成的范围,我们引入了常识-推论增强神经叙事教学(CAST),这是一个框架,用于将常识推理引入生成过程,同时建模多个字符之间的互动。我们发现,我们的CAST方法生成了更加一致的和在专题上的双字符故事,在包括图案可言和专题上保持的基线上优异。我们还展示了如何使用CAST方法来进一步培训语言模型,从而产生更加一致的故事并降低计算成本。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
知识驱动的视觉知识学习,以VQA视觉问答为例,31页ppt
专知会员服务
35+阅读 · 2020年9月25日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
7+阅读 · 2018年1月30日
VIP会员
相关VIP内容
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
知识驱动的视觉知识学习,以VQA视觉问答为例,31页ppt
专知会员服务
35+阅读 · 2020年9月25日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员