Intelligent robots designed to interact with humans in real scenarios need to be able to refer to entities actively by natural language. In spatial referring expression generation, the ambiguity is unavoidable due to the diversity of reference frames, which will lead to an understanding gap between humans and robots. To narrow this gap, in this paper, we propose a novel perspective-corrected spatial referring expression generation (PcSREG) approach for human-robot interaction by considering the selection of reference frames. The task of referring expression generation is simplified into the process of generating diverse spatial relation units. First, we pick out all landmarks in these spatial relation units according to the entropy of preference and allow its updating through a stack model. Then all possible referring expressions are generated according to different reference frame strategies. Finally, we evaluate every expression using a probabilistic referring expression resolution model and find the best expression that satisfies both of the appropriateness and effectiveness. We implement the proposed approach on a robot system and empirical experiments show that our approach can generate more effective spatial referring expressions for practical applications.
翻译:设计在真实情况下与人类互动的智能机器人需要能够以自然语言积极提及实体。 在空间参照表达方式生成中,由于参照框架的多样性,模糊性不可避免,因为参照框架的多样性将导致人类和机器人之间的理解差距。为了缩小这一差距,我们在本文件中建议通过考虑选择参照框架,为人类-机器人互动采用新颖的视角修正的空间参照表达方式生成(PcSREG)方法。参考表达方式生成的任务被简化到生成多种空间关系单位的过程之中。首先,我们根据偏好的酶取出这些空间关系单位中的所有里程碑,并允许通过堆叠模型进行更新。然后,所有可能的参照表达方式都根据不同的参照框架战略生成。最后,我们利用一种概率性参考表达分辨率模型来评估每一种表达方式,并找到既符合适当性又符合有效性的最佳表达方式。我们实施关于机器人系统的拟议方法和实验实验表明,我们的方法可以产生更有效的空间参照表达方式,用于实际应用。