We prove the existence of Reed-Solomon codes of any desired rate $R \in (0,1)$ that are combinatorially list-decodable up to a radius approaching $1-R$, which is the information-theoretic limit. This is established by starting with the full-length $[q,k]_q$ Reed-Solomon code over a field $\mathbb F_q$ that is polynomially larger than the desired dimension $k$, and "puncturing" it by including $k/R$ randomly chosen codeword positions. Our puncturing result is more general and applies to any code with large minimum distance: we show that a random rate $R$ puncturing of an $\mathbb F_q$-linear "mother" code whose relative distance is close enough to $1-1/q$ is list-decodable up to a radius approaching the $q$-ary list-decoding capacity bound $h_q^{-1}(1-R)$. In fact, for large $q$, or under a stronger assumption of low-bias of the mother-code, we prove that the threshold rate for list-decodability with a specific list-size (and more generally, any "local" property) of the random puncturing approaches that of fully random linear codes. Thus, all current (and future) list-decodability bounds shown for random linear codes extend automatically to random puncturings of any low-bias (or large alphabet) code. This can be viewed as a general derandomization result applicable to random linear codes. To obtain our conclusion about Reed-Solomon codes, we establish some hashing properties of field trace maps that allow us to reduce the list-decodability of RS codes to its associated trace (dual-BCH) code, and then apply our puncturing theorem to the latter. Our approach implies, essentially for free, optimal rate list-recoverability of punctured RS codes as well.
翻译:我们证明存在Reed-Solomon 代码, 任何想要的 $R\ in (0, 1) 的 美元( 0), 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, q) 的 Reed- Solomon 代码, 是一个字段的全长度 $[ q, k] _ q$ Reed- Solomon 代码 。 使用任意选择的代码位置, 将它“ 美元/ R 美元” 的 Oral- 列表“ ” 标为“ 美元/ R” 代码 。 我们的解析结果比较普通 $- ror 代码为“ 美元, 美元- 美元, 美元- 美元 直径 直径 代码为“ 直径直径解 ”, 直径解码为“ 美元- 直径解码 ” 直径直径, 直径, 直径直径, 直译为“ 直径解” 直径直径” 直径, 直径码为“ 直径” 直径解 直, 直径解, 直的代码为“ 直, 直, 直, 直, 直, 直径解, 直, 直, 直, 直为“ 直径直径解, 直为“ 直, 直, 直, 直径解, 直径解, 。