We study the classical expander codes, introduced by Sipser and Spielman \cite{SS96}. Given any constants $0< \alpha, \varepsilon < 1/2$, and an arbitrary bipartite graph with $N$ vertices on the left, $M < N$ vertices on the right, and left degree $D$ such that any left subset $S$ of size at most $\alpha N$ has at least $(1-\varepsilon)|S|D$ neighbors, we show that the corresponding linear code given by parity checks on the right has distance at least roughly $\frac{\alpha N}{2 \varepsilon }$. This is strictly better than the best known previous result of $2(1-\varepsilon ) \alpha N$ \cite{Sudan2000note, Viderman13b} whenever $\varepsilon < 1/2$, and improves the previous result significantly when $\varepsilon $ is small. Furthermore, we show that this distance is tight in general, thus providing a complete characterization of the distance of general expander codes. Next, we provide several efficient decoding algorithms, which vastly improve previous results in terms of the fraction of errors corrected, whenever $\varepsilon < \frac{1}{4}$. Finally, we also give a bound on the list-decoding radius of general expander codes, which beats the classical Johnson bound in certain situations (e.g., when the graph is almost regular and the code has a high rate). Our techniques exploit novel combinatorial properties of bipartite expander graphs. In particular, we establish a new size-expansion tradeoff, which may be of independent interests.


翻译:我们研究了由Sipser和Spielman {cite{ssta{s96}推出的古典扩张码。根据任何常数 $0 < alpha,\ varepsilon < 1/2 美元,以及任意的双叶图,左面有1美元,左面有1美元,右面有1美元,左面有1美元,左面有1美元,左面有1美元,每面1美元,每面1美元,左面1美元,每面1美元,每面1美元,右面平面检查给出的相应线性代码至少有大约1美元,左面2美元,左面2美元,左面2美元,左面1美元,左面1美元,左面1美元,左面1美元,左面1美元,左面1美元,左面1美元,每面1美元,每面1美元,右面1美元,右面1美元,右面1美元,右面1美元,右面1美元,直线代码至少1美元,直线值1美元,直线值1美元,直线值1美元,直方值1美元,直方有1美元,直面1美元,直方值1美元,直方,直方,直方。最后,直方显示,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方计算,直方,直方,直方,直方,直方,直,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方,直方

0
下载
关闭预览

相关内容

【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
61+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
架构文摘
3+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
0+阅读 · 2022年1月18日
Arxiv
0+阅读 · 2022年1月16日
Arxiv
0+阅读 · 2022年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
架构文摘
3+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
相关论文
Arxiv
0+阅读 · 2022年1月19日
Arxiv
0+阅读 · 2022年1月18日
Arxiv
0+阅读 · 2022年1月16日
Arxiv
0+阅读 · 2022年1月15日
Top
微信扫码咨询专知VIP会员