This paper extends Becker (1957)'s outcome test of discrimination to settings where a (human or algorithmic) decision-maker produces a ranked list of candidates. Ranked lists are particularly relevant in the context of online platforms that produce search results or feeds, and also arise when human decisionmakers express ordinal preferences over a list of candidates. We show that non-discrimination implies a system of moment inequalities, which intuitively impose that one cannot permute the position of a lower-ranked candidate from one group with a higher-ranked candidate from a second group and systematically improve the objective. Moreover, we show that that these moment inequalities are the only testable implications of non-discrimination when the auditor observes only outcomes and group membership by rank. We show how to statistically test the implied inequalities, and validate our approach in an application using data from LinkedIn.
翻译:本文将贝克尔(1957年)对歧视结果的测试延伸至(人或算法)决策者产生排名候选人名单的环境,排位名单在产生搜索结果或反馈的在线平台中特别相关,在人类决策者对候选人名单表示偏好时也会出现。我们表明,不歧视意味着一种瞬间不平等制度,这种制度直觉地规定,一个人不能对第二组候选人级别较高的一个群体中级别较低的候选人的地位进行估测,并系统地改进目标。 此外,我们表明,当审计员只按级别观察结果和群体成员时,这一刻的不平等是不歧视的唯一可检验影响。我们展示了如何从统计上检验隐含的不平等,并用LinkedIn的数据验证我们在应用中的做法。