Generative models synthesize image data with great success regarding sampling quality, diversity and feature disentanglement. Generative models for time series lack these benefits due to a missing representation, which captures temporal dynamics and allows inversion for sampling. The paper proposes the intertemporal return plot (IRP) representation to facilitate the use of image-based generative adversarial networks for time series generation. The representation proves effective in capturing time series characteristics and, compared to alternative representations, benefits from invertibility and scale-invariance. Empirical benchmarks confirm these features and demonstrate that the IRP enables an off-the-shelf Wasserstein GAN with gradient penalty to sample realistic time series, which outperform a specialized RNN-based GAN, while simultaneously reducing model complexity.
翻译:生成模型综合图像数据,在取样质量、多样性和特征分解方面非常成功; 生成时间序列模型缺乏这些效益,因为缺少代表,无法捕捉时间动态并允许对取样进行反演; 本文提议时际回归图示,以便利在时间序列生成中使用基于图像的基因对抗网络; 表示在捕捉时间序列特性方面证明有效,与替代表示相比,从不可逆性和规模偏差中受益。 经验性基准确认这些特征,并表明IRP使现成的瓦塞尔斯坦GAN(Wasserstein GAN)能够对现实的时间序列进行抽取梯度处罚,这比专门的RNNGAN(GAN)(RN)(GAN)(RN)(GAN)(GAN)(GAN(GAN)(GAN)(GAN)(GAN)(GAN)(GAN)(GAN)(GAN)(GAN(G)(GAN)(GAN)(G)(GAN)(GAN)(N)(N(N)(N)(GAN)(GAN)(G)(GAN(GAN)(N)(N)(G)(G)(N)(N)(G)(N)(GAN)(G)(G)(N)(G)(GN)(GAN)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)(G)