We study the edge-weighted online stochastic matching problem. Since Feldman, Mehta, Mirrokni, and Muthukrishnan proposed the $(1-\frac1e)$-competitive Suggested Matching algorithm, there has been no improvement for the general edge-weighted online stochastic matching problem. In this paper, we introduce the first algorithm beating the $1-\frac1e$ bound in this setting, achieving a competitive ratio of $0.645$. Under the LP proposed by Jaillet and Lu, we design an algorithmic preprocessing, dividing all edges into two classes. Then based on the Suggested Matching algorithm, we adjust the matching strategy to improve the performance on one class in the early stage and on another class in the late stage, while keeping the matching events of different edges highly independent. By balancing them, we guarantee the matching probability of every single edge.
翻译:我们研究的是边加权在线随机匹配问题。 自从 Feldman、 Mehta、 Mirrokni 和 Muthukrishnan 提出 $( 1-\ frac1e) 的竞争性推荐匹配算法以来, 普通边加权在线随机匹配匹配问题没有改善。 在本文中, 我们引入了第一个在设置中绑定的 $- frac1e 的算法, 达到了 0. 645 美元的竞争性比重。 在 Jaillet 和 Lu 提议的 LP 下, 我们设计了一个算法预处理, 将所有边缘分成两个等级。 然后根据推荐匹配算法, 我们调整匹配策略, 以提高早期一班和后期另一班的性能, 同时保持不同边缘的匹配事件高度独立。 通过平衡, 我们保证每个边缘的匹配概率。