Dynamic game arises as a powerful paradigm for multi-robot planning, for which safety constraint satisfaction is crucial. Constrained stochastic games are of particular interest, as real-world robots need to operate and satisfy constraints under uncertainty. Existing methods for solving stochastic games handle chance constraints using exponential penalties with hand-tuned weights. However, finding a suitable penalty weight is nontrivial and requires trial and error. In this paper, we propose the chance-constrained iterative linear-quadratic stochastic games (CCILQGames) algorithm. CCILQGames solves chance-constrained stochastic games using the augmented Lagrangian method. We evaluate our algorithm in three autonomous driving scenarios, including merge, intersection, and roundabout. Experimental results and Monte Carlo tests show that CCILQGames can generate safe and interactive strategies in stochastic environments.
翻译:动态游戏是多机器人规划的强大范例,安全约束性满意度是多机器人规划的关键。 受约束的随机游戏特别令人感兴趣, 因为真实世界的机器人需要操作, 在不确定的情况下满足限制。 现有解决随机游戏的方法使用手控重量的指数性惩罚处理机会限制问题。 然而, 找到合适的惩罚重量是非三重性, 需要试探和错误。 在本文中, 我们提议了受机会限制的迭代线性线性对口型游戏( CCILQGames) 算法 。 CCIQGames 使用增强的拉格朗格方法解决受机会限制的随机游戏。 我们用三种自主驱动情景评估我们的算法, 包括合并、 交叉和环绕。 实验结果和蒙特卡洛测试显示, CCIQGames 可以在随机环境中产生安全且互动的战略 。