We consider the problem of uniformity testing of Lipschitz continuous distributions with bounded support. The alternative hypothesis is a composite set of Lipschitz continuous distributions that are at least $\varepsilon$ away in $\ell_1$ distance from the uniform distribution. We propose a sequential test that adapts to the unknown distribution under the alternative hypothesis. Referred to as the Adaptive Binning Coincidence (ABC) test, the proposed strategy adapts in two ways. First, it partitions the set of alternative distributions into layers based on their distances to the uniform distribution. It then sequentially eliminates the alternative distributions layer by layer in decreasing distance to the uniform, and subsequently takes advantage of favorable situations of a distant alternative by exiting early. Second, it adapts, across layers of the alternative distributions, the resolution level of the discretization for computing the coincidence statistic. The farther away the layer is from the uniform, the coarser the discretization is needed for eliminating/exiting this layer. It thus exits both early in the detection process and quickly by using a lower resolution to take advantage of favorable alternative distributions. The ABC test builds on a novel sequential coincidence test for discrete distributions, which is of independent interest. We establish the sample complexity of the proposed tests as well as a lower bound.
翻译:我们考虑对Lipschitz连续分布进行统一测试的问题。 替代的假设是一整套Lipschitz连续分布的复合组合体, 以美元/ varepsilon$$$1美元与统一分布的距离计算, 以美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ ; 我们提出一个顺序测试, 以适应替代分配假设下未知的分布。 被称作“ 调适宾宁巧合( ABC) ” 测试, 以两种方式调整。 首先, 将一组替代分布的分布分成根据它们与统一分布的距离进行分解, 分解到不同的层次。 然后, 分解的分布层通过层逐层逐层逐层逐层, 降低与制服的距离, 并随后通过提早退出, 利用一个远方分布的有利条件。 其次, 调整不同分布的解析度的解度水平, 离层测试是新的, 。 我们的试测测测测测,, 测测测,,, 测 测 测 测 测 测 测 测 测 测 测, 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 度 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测 测