The proliferation of social media platforms, recommender systems, and their joint societal impacts have prompted significant interest in opinion formation and evolution within social networks. In this work, we study how local dynamics in a network can drive opinion polarization. In particular, we study time evolving networks under the classic Friedkin-Johnsen opinion model. Edges are iteratively added or deleted according to simple local rules, modeling decisions based on individual preferences and network recommendations. We give theoretical bounds showing how individual edge updates affect polarization, and a related measure of disagreement across edges. Via simulations on synthetic and real-world graphs, we find that the presence of two simple dynamics gives rise to high polarization: 1) confirmation bias -- i.e., the preference for nodes to connect to other nodes with similar expressed opinions and 2) friend-of-friend link recommendations, which encourage new connections between closely connected nodes. We also investigate the role of fixed connections which are not subject to these dynamics. We find that even a small number of fixed edges can significantly limit polarization, but still lead to multimodal opinion distributions, which may be considered polarized in a different sense.
翻译:社交媒体平台、建议者系统及其共同社会影响的扩散引起了人们对社会网络内舆论形成和演变的极大兴趣。 在这项工作中,我们研究了网络中本地动态如何能推动舆论分化。我们特别研究了经典Friedkin-Johnsen观点模式下的时间演变网络。根据简单的本地规则、基于个人偏好和网络建议的模型决定,边缘是迭代增加或删除的。我们给出了理论界限,显示个人边缘变化如何影响极化,以及相关的边缘差异程度。在合成和真实世界图表上进行虚拟模拟,我们发现两种简单动态的存在会导致高度两极分化:1)确认偏差 -- -- 即偏好节点与表达类似观点的其他节点连接,2)朋友联系建议,鼓励密切关联的节点之间的新联系。我们还调查了固定连接的作用,这些不受制于这些动态。我们发现,即使是少量固定边缘也能大大限制两极分化,但仍然导致多式观点的分布,这可以从不同角度上被视为两极分化。