Opinion spreading in a society decides the fate of elections, the success of products, and the impact of political or social movements. The model by Hegselmann and Krause is a well-known theoretical model to study such opinion formation processes in social networks. In contrast to many other theoretical models, it does not converge towards a situation where all agents agree on the same opinion. Instead, it assumes that people find an opinion reasonable if and only if it is close to their own. The system converges towards a stable situation where agents sharing the same opinion form a cluster, and agents in different clusters do not \mbox{influence each other.} We focus on the social variant of the Hegselmann-Krause model where agents are connected by a social network and their opinions evolve in an iterative process. When activated, an agent adopts the average of the opinions of its neighbors having a similar opinion. By this, the set of influencing neighbors of an agent may change over time. To the best of our knowledge, social Hegselmann-Krause systems with asynchronous opinion updates have only been studied with the complete graph as social network. We show that such opinion dynamics with random agent activation are guaranteed to converge for any social network. We provide an upper bound of $\mathcal{O}(n|E|^2 (\varepsilon/\delta)^2)$ on the expected number of opinion updates until convergence, where $|E|$ is the number of edges of the social network. For the complete social network we show a bound of $\mathcal{O}(n^3(n^2 + (\varepsilon/\delta)^2))$ that represents a major improvement over the previously best upper bound of $\mathcal{O}(n^9 (\varepsilon/\delta)^2)$. Our bounds are complemented by simulations that indicate asymptotically matching lower bounds.


翻译:在社会上传播的舆论在社会上决定着选举的命运、产品的成功以及政治或社会运动的影响。 Hegselmann 和 Krause 的模型是研究社交网络中这种舆论形成过程的著名理论模型。 与许多其他理论模型不同, 它并不趋向于所有代理人都同意相同观点的情况。 相反, 它假定人们会发现一种合理的见解, 如果而且只有在这种观点接近他们自己的时候。 系统会走向一种稳定的局面, 即共享相同观点的代理人组成一个集群, 不同集群中的代理人不会完全( mbox{ 相互影响 ) 。 } 我们专注于Hegselmann- Krause 模式的社会变异性, 由社会网络连接到他们的观点在互动过程中演变。 当激活时, 一个代理人会采用其邻居具有类似观点的平均值。 这样, 影响代理人邻居的一组会随着时间的推移而变化。 根据我们的知识, 社会- kruite surate survey survations 只能用完整的图表来表示 $ 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【NUS-Xavier教授】生成模型VAE与GAN,69页ppt
专知会员服务
74+阅读 · 2022年4月6日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
28+阅读 · 2022年2月20日
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
【DeepMind】强化学习教程,83页ppt
专知会员服务
158+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关VIP内容
【NUS-Xavier教授】生成模型VAE与GAN,69页ppt
专知会员服务
74+阅读 · 2022年4月6日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
28+阅读 · 2022年2月20日
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
【DeepMind】强化学习教程,83页ppt
专知会员服务
158+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员