CausalVAE是一个解耦表征学习方法,其旨在发现物理世界中各种概念之间的因果关系并生成其低维表征。该工作首次采用因果关系对表征建模,并可以通过表征的结构因果模型生成反事实图片。 该工作可应用在图像理解上,并帮助计算机更好的发现图片中稳定的因果表示,其可应用在下游分类,识别任务当中。另外由于该工作重建了物理世界的因果模型,可以用来对观察数据构建模拟器,通过该模拟器可以做满足因果的数据增强以及图像去噪。比如在自动驾驶中,可以通过该模型的因果干预直接去除影子而不影响别的因素,从而提升自动驾驶的安全性。 在理论层面上,该文章建立了一套识别性理论,证明了CausalVAE建立了首个可以识别的,具有可解释性的因果解耦低维表征。
https://www.zhuanzhi.ai/paper/9b63efa3a0b56cd27d64b6c7bb327471