We study expression learning problems with syntactic restrictions and introduce the class of finite-aspect checkable languages to characterize symbolic languages that admit decidable learning. The semantics of such languages can be defined using a bounded amount of auxiliary information that is independent of expression size but depends on a fixed structure over which evaluation occurs. We introduce a generic programming language for writing programs that evaluate expression syntax trees, and we give a meta-theorem that connects such programs for finite-aspect checkable languages to finite tree automata, which allows us to derive new decidable learning results and decision procedures for several expression learning problems by writing programs in the programming language.
翻译:我们研究了带有语法限制的表达式学习问题,并引入了有限方面可检查语言的类别,以描述允许可判定学习的符号语言。这种语言的语义可以使用有限的辅助信息定义,这些信息独立于表达式大小,但依赖于一个固定的结构,该结构上的评估是发生的。我们引入了一种通用的编程语言,用于编写评估表达式语法树的程序,并提供了一个元定理,将这种编程语言与有限树自动机联系起来,从而编写程序来推导出新的可判定学习结果和决策程序,适用于几个表达式学习问题。