Word ordering is a constrained language generation task taking unordered words as input. Existing work uses linear models and neural networks for the task, yet pre-trained language models have not been studied in word ordering, let alone why they help. We use BART as an instance and show its effectiveness in the task. To explain why BART helps word ordering, we extend analysis with probing and empirically identify that syntactic dependency knowledge in BART is a reliable explanation. We also report performance gains with BART in the related partial tree linearization task, which readily extends our analysis.
翻译:单词顺序是一个有限制的语言生成任务, 以不顺序的单词作为输入。 现有的工作使用线性模型和神经网络来完成这项任务, 但事先训练的语言模型还没有在文字顺序中研究, 更不用说为什么它们有帮助了。 我们用BART作为例子, 并展示它在这个任务中的有效性。 为了解释为什么BART帮助文字顺序, 我们扩展分析, 进行实验, 并用经验来确认 BART 的合成依赖性知识是一个可靠的解释。 我们还报告与BART 一起在相关的部分树线性化任务中的业绩收益, 这项任务很容易扩展我们的分析。