Much information available to applied researchers is contained within written language or spoken text. Deep language models such as BERT have achieved unprecedented success in many applications of computational linguistics. However, much less is known about how these models can be used to analyze existing text. We propose a novel method that combines transformer models with network analysis to form a self-referential representation of language use within a corpus of interest. Our approach produces linguistic relations strongly consistent with the underlying model as well as mathematically well-defined operations on them, while reducing the amount of discretionary choices of representation and distance measures. It represents, to the best of our knowledge, the first unsupervised method to extract semantic networks directly from deep language models. We illustrate our approach in a semantic analysis of the term "founder". Using the entire corpus of Harvard Business Review from 1980 to 2020, we find that ties in our network track the semantics of discourse over time, and across contexts, identifying and relating clusters of semantic and syntactic relations. Finally, we discuss how this method can also complement and inform analyses of the behavior of deep learning models.


翻译:应用研究人员可获得的大量信息都包含在书面语言或口头文字中。深语言模型,如BERT,在许多计算语言应用中取得了前所未有的成功。然而,这些模型如何用来分析现有文本却远不为人所知。我们提出了一个新颖的方法,将变压器模型与网络分析结合起来,形成一种在兴趣中以自我偏好的方式表达语言使用的语言。我们的方法产生了与基本模型以及数学上明确界定的语言关系,同时减少了代表和距离措施的自由裁量选择的数量。根据我们的知识,它代表着从深层语言模型中直接提取语义网络的第一种不受监督的方法。我们用“创建者”一词的语义分析来说明我们的方法。我们利用1980年至2020年整个哈佛商业评论的文集,发现我们的网络联系可以跟踪长期和跨背景的语义学的语义学,并查明和相关的语义学和合成关系组。最后,我们讨论了这一方法如何补充和启发对深层次学习模型行为的分析。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年7月18日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
65+阅读 · 2021年6月18日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2022年7月18日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
65+阅读 · 2021年6月18日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
25+阅读 · 2018年1月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员