In Cultural Heritage, hyperspectral images are commonly used since they provide extended information regarding the optical properties of materials. Thus, the processing of such high-dimensional data becomes challenging from the perspective of machine learning techniques to be applied. In this paper, we propose a Rank-$R$ tensor-based learning model to identify and classify material defects on Cultural Heritage monuments. In contrast to conventional deep learning approaches, the proposed high order tensor-based learning demonstrates greater accuracy and robustness against overfitting. Experimental results on real-world data from UNESCO protected areas indicate the superiority of the proposed scheme compared to conventional deep learning models.
翻译:在文化遗产中,超光谱图像经常使用,因为它们提供了有关材料光学特性的广泛信息,因此,从将要应用的机器学习技术的角度来看,这种高维数据的处理变得具有挑战性;在本文件中,我们提议采用一个以10亿卢比为基础的学习模式,以查明文化遗产遗迹的物质缺陷并对之进行分类;与传统的深层学习方法不同,拟议的高阶高压学习表明,不过分适应,其准确性和稳健性更高;教科文组织保护区实际世界数据的实验结果表明,与传统的深层学习模式相比,拟议办法具有优越性。