Federated learning is an emerging machine learning paradigm where clients train models locally and formulate a global model based on the local model updates. To identify the state-of-the-art in federated learning and explore how to develop federated learning systems, we perform a systematic literature review from a software engineering perspective, based on 231 primary studies. Our data synthesis covers the lifecycle of federated learning system development that includes background understanding, requirement analysis, architecture design, implementation, and evaluation. We highlight and summarise the findings from the results, and identify future trends to encourage researchers to advance their current work.
翻译:联邦学习是一种新兴的机器学习模式,客户在当地培训模型,并在当地模型更新的基础上制定全球模型。为了确定联邦学习的最新水平并探索如何开发联邦学习系统,我们从软件工程的角度,根据231项初级研究,进行系统化的文献审查。我们的数据合成涵盖了联邦学习系统开发的生命周期,其中包括背景理解、需求分析、建筑设计、实施和评价。我们强调并总结了结果,并确定了鼓励研究人员推进当前工作的今后趋势。