We propose a novel learned deep prior of body motion for 3D hand shape synthesis and estimation in the domain of conversational gestures. Our model builds upon the insight that body motion and hand gestures are strongly correlated in non-verbal communication settings. We formulate the learning of this prior as a prediction task of 3D hand shape over time given body motion input alone. Trained with 3D pose estimations obtained from a large-scale dataset of internet videos, our hand prediction model produces convincing 3D hand gestures given only the 3D motion of the speaker's arms as input. We demonstrate the efficacy of our method on hand gesture synthesis from body motion input, and as a strong body prior for single-view image-based 3D hand pose estimation. We demonstrate that our method outperforms previous state-of-the-art approaches and can generalize beyond the monologue-based training data to multi-person conversations. Video results are available at http://people.eecs.berkeley.edu/~evonne_ng/projects/body2hands/.


翻译:我们提议在3D手形合成和估计的谈话手势领域,在3D手形合成和估计的体力运动之前,我们深思熟虑。我们的模型基于这样的洞察力,即身体运动和手势在非语言通信环境中密切相关。我们把这个先学成的预测任务,是3D手形在时间上随体动输入而形成的预测任务。我们受过3D的训练,从大规模互联网视频数据集中得出的估计,我们的手势预测模型产生令人信服的3D手势,只以3D手势作为输入。我们展示了我们手势组合的方法在身体运动输入的手势式合成上的效力,以及作为以单视图像为基础的3D手势显示的强体。我们证明,我们的方法超越了以往最先进的方法,可以将单一语言培训数据推广到多人对话。视频结果见http://people.eecs.eberkeley.edu/ ~evonne_ng/project/body2hands/。

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
专知会员服务
66+阅读 · 2021年5月21日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
3D Face Modeling from Diverse Raw Scan Data
Arxiv
5+阅读 · 2019年2月13日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员