We study the computability of global solutions to linear Schr\"odinger equations with magnetic fields and the Hartree equation on $\mathbb R^3$. We show that the solution can always be globally computed with error control on the entire space if there exist a priori decay estimates in generalized Sobolev norms on the initial state. Using weighted Sobolev norm estimates, we show that the solution can be computed with uniform computational runtime with respect to initial states and potentials.
翻译:我们研究了直线Schr\"odinger方程式与磁场和Hartree方程式的全球性解决方案的可乘性,以$\mathbb R $3美元计算。我们表明,如果在最初状态上存在普遍标准Sobolev的先验衰变估计,则该解决方案总可以用整个空间的错误控制来进行全球计算。我们使用加权的Sobolev规范估算,表明该解决方案可以通过与初始状态和潜力有关的统一的计算运行时间来计算。