In this paper, we present a general numerical platform for designing accurate, efficient, and stable numerical algorithms for incompressible hydrodynamic models that obeys the thermodynamical laws. The obtained numerical schemes are automatically linear in time. It decouples the hydrodynamic variable and other state variables such that only small-size linear problems need to be solved at each time marching step. Furthermore, if the classical velocity projection method is utilized, the velocity field and pressure field can be decoupled. In the end, only a few elliptic-type equations shall be solved in each time step. This strategy is made possible through a sequence of model reformulations by fully exploring the models' thermodynamic structures. The generalized Onsager principle directly guides these reformulation procedures. In the reformulated but equivalent models, the reversible and irreversible components can be identified, guiding the numerical platform to decouple the reversible and irreversible dynamics. This eventually leads to decoupled numerical algorithms, given that the coupling terms only involve irreversible dynamics. To further demonstrate the numerical platform's power, we apply it to several specific incompressible hydrodynamic models. The energy stability of the proposed numerical schemes is shown in detail. The second-order accuracy in time is verified numerically through time step refinement tests. Several benchmark numerical examples are presented to further illustrate the proposed numerical framework's accuracy, stability, and efficiency.


翻译:在本文中, 我们提出了一个用于设计准确、 高效和稳定的数值算法的通用数字平台, 用于设计符合热动力学定律的压抑性流体动力模型。 获得的数值方法在时间上自动线性。 它会分解流体动力变量和其他状态变量, 这样只需在每次进进进步骤中解决小范围的线性问题。 此外, 如果使用传统速度预测方法, 速度场和压力场可以脱钩。 最终, 在每个步骤中, 只能解决少数次的椭圆型等式等式。 通过充分探索模型的热动力结构来重新制定模型序列, 使这一战略成为可能。 通用的 Onsager 原则直接指导这些重整程序。 在重整但相当的模型中, 可以确定可逆和不可逆转的线性组成部分, 指导数字平台分解可逆性和不可逆转的动态。 这最终会导致数字算法脱钩, 因为组合的术语只涉及不可逆转的动态。 为了进一步展示数字平台的力量, 我们将它应用到若干具体的模型, 具体的时间动力结构的精确性精确性 。 数字性试验中, 数字性试验中的拟议的精确性 数字性试验 数字性试验是 数字性 的精确性试验 数字性试验 。 数字性试验是 的 数字性试验中的拟议的 数字性试验 数字性 的 的 数字性 数字性 数字性试验 的 的 的精确性试验是 的 的 。 数字性试验 的 的 的 的 的 的 数字性试验的 。 。 。 数字性试验的 。 。 数字性 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员