Face detection has received intensive attention in recent years. Many works present lots of special methods for face detection from different perspectives like model architecture, data augmentation, label assignment and etc., which make the overall algorithm and system become more and more complex. In this paper, we point out that \textbf{there is no gap between face detection and generic object detection}. Then we provide a strong but simple baseline method to deal with face detection named TinaFace. We use ResNet-50 \cite{he2016deep} as backbone, and all modules and techniques in TinaFace are constructed on existing modules, easily implemented and based on generic object detection. On the hard test set of the most popular and challenging face detection benchmark WIDER FACE \cite{yang2016wider}, with single-model and single-scale, our TinaFace achieves 92.1\% average precision (AP), which exceeds most of the recent face detectors with larger backbone. And after using test time augmentation (TTA), our TinaFace outperforms the current state-of-the-art method and achieves 92.4\% AP. The code will be available at \url{https://github.com/Media-Smart/vedadet}.
翻译:近些年来,对脸部的探测工作受到高度关注。 许多工作都从不同的角度,如模型结构、数据增强、标签分配等,展示了许多特殊的脸部探测方法,使整个算法和系统变得越来越复杂。 在本文件中,我们指出,在脸部探测和通用天体探测之间没有差距。 然后,我们提供了一个强大而简单的基准方法,用以处理脸部检测,名为TinaFace。我们用ResNet-50\cite{he2016deep}作为主干,蒂纳法西的所有模块和技术都是在现有模块的基础上,容易实施,并以通用物体探测为基础。在最流行和最具挑战性的脸部检测基准WIDER FACE\cite{Yang2016blober}的硬测试集上,我们TinaFace达到平均精确度92.1 ⁇ 。 平均精确度超过了最近使用大脊椎进行的脸部探测器。在测试时间增强(TTTTTA)之后,我们的TinaFace超越了当前状态和艺术方法,并实现了92.4 ⁇ /MERDA} AP号代码将可在网上查到。