The proliferation of artificial intelligence is increasingly dependent on model understanding. Understanding demands both an interpretation - a human reasoning about a model's behavior - and an explanation - a symbolic representation of the functioning of the model. Notwithstanding the imperative of transparency for safety, trust, and acceptance, the opacity of state-of-the-art reinforcement learning algorithms conceals the rudiments of their learned strategies. We have developed a policy regularization method that asserts the global intrinsic affinities of learned strategies. These affinities provide a means of reasoning about a policy's behavior, thus making it inherently interpretable. We have demonstrated our method in personalized prosperity management where individuals' spending behavior in time dictate their investment strategies, i.e. distinct spending personalities may have dissimilar associations with different investment classes. We now explain our model by reproducing the underlying prototypical policies with discretized Markov models. These global surrogates are symbolic representations of the prototypical policies.
翻译:人工智能的扩散越来越取决于模型理解。理解要求既要解释 — — 模型行为的人性推理 — — 又要解释 — — 模型功能的象征性代表 — — 模型功能。尽管安全、信任和接受需要透明度,但最先进的强化学习算法的不透明掩盖了其学习战略的特征。我们开发了一种政策规范化方法,该方法维护了知识战略的全球内在关联性。这些关联性为政策行为提供了一种推理手段,使政策本身可以解释。我们已经在个人化的繁荣管理方法中展示了个人化的繁荣管理方法,即个人花在时间上的行为决定了自己的投资战略,即不同的支出人可能与不同的投资类别有不同联系。我们现在通过以离散的马尔科夫模式重新生成基本偏向政策来解释我们的模型。这些全球代孕者是本型政策的象征性体现。