Deep Operator Networks (DeepONets) offer a powerful, data-driven tool for solving parametric PDEs by learning operators, i.e. maps between infinite-dimensional function spaces. In this work, we employ physics-informed DeepONets in the context of high-dimensional, Bayesian inverse problems. Traditional solution strategies necessitate an enormous, and frequently infeasible, number of forward model solves, as well as the computation of parametric derivatives. In order to enable efficient solutions, we extend DeepONets by employing a realNVP architecture which yields an invertible and differentiable map between the parametric input and the branch net output. This allows us to construct accurate approximations of the full posterior which can be readily adapted irrespective of the number of observations and the magnitude of the observation noise. As a result, no additional forward solves are required, nor is there any need for costly sampling procedures. We demonstrate the efficacy and accuracy of the proposed methodology in the context of inverse problems based on a anti-derivative, a reaction-diffusion and a Darcy-flow equation.
翻译:深操作员网络(DeepONets)提供了一种强大的数据驱动工具,用于由学习操作员解决参数PDE,即无限功能空间之间的地图。在这项工作中,我们在高维、拜叶斯反向问题的背景下使用物理知情的深通设备。传统的解决方案战略要求有大量且往往是不可行的远方模型解决方案,以及参数衍生物的计算。为了实现有效的解决方案,我们使用一个真实的NVP结构来扩展DeepONets,该结构在参数输入和分支网输出之间产生不可逆和不同的地图。这使我们能够构建完全的远方图的准确近似值,无论观测次数和观测噪音的大小,都可以随时加以调整。因此,不需要额外的远方解决方案,也不需要昂贵的取样程序。我们展示了拟议方法在基于反方向、反反应反扩散和达西流方程式的反问题背景下的有效性和准确性。