Unambiguous automata are nondeterministic automata in which every word has at most one accepting run. In this paper we give a polynomial-time algorithm for model checking discrete-time Markov chains against \omega-regular specifications represented as unambiguous automata. We furthermore show that the complexity of this model checking problem lies in NC: the subclass of P comprising those problems solvable in poly-logarithmic parallel time. These complexity bounds match the known bounds for model checking Markov chains against specifications given as deterministic automata, notwithstanding the fact that unambiguous automata can be exponentially more succinct than deterministic automata. We report on an implementation of our procedure, including an experiment in which the implementation is used to model check LTL formulas on Markov chains.
翻译:非歧义自动机是指每个词都至多具有一个接受运行的非确定性自动机。在本文中,我们提出了一种多项式时间算法,用于将离散时间马尔可夫链模型检查与以非歧义自动机表示的ω正则规范相匹配。此外,我们还表明,这种模型检查问题的复杂度位于NC中,即P的子类,包括可以在多对数并行时间内解决的问题。这些复杂度限制与将马尔可夫链与以确定性自动机表示的规范进行模型检查的已知限制相匹配,尽管非歧义自动机可以比确定性自动机更简洁地表示。我们报告了我们的程序的实现,包括一个实验,在该实验中,使用该实现对马尔可夫链进行了LTL公式的模型检查。