We explain equivariant neural networks, a notion underlying breakthroughs in machine learning from deep convolutional neural networks for computer vision to AlphaFold 2 for protein structure prediction, without assuming knowledge of equivariance or neural networks. The basic mathematical ideas are simple but are often obscured by engineering complications that come with practical realizations. We extract and focus on the mathematical aspects, and limit ourselves to a cursory treatment of the engineering issues at the end.
翻译:我们解释的是等式神经网络,这是一个从深层进化神经网络为计算机视觉而学习机器的突破性概念,而阿尔法佛尔德2是蛋白质结构预测的突破性概念,而没有假设对等性或神经网络的知识。 基本数学理念很简单,但往往被具有实际认识的工程复杂因素所掩盖。 我们提取并关注数学方面,将自己局限在最终对工程问题的粗略处理上。