We consider an epidemic change-point detection in a large class of causal time series models, including among other processes, AR($\infty$), ARCH($\infty$), TARCH($\infty$), ARMA-GARCH. A test statistic based on the Gaussian quasi-maximum likelihood estimator of the parameter is proposed. It is shown that, under the null hypothesis of no change, the test statistic converges to a distribution obtained from a difference of two Brownian bridge and diverges to infinity under the epidemic alternative. Numerical results for simulation and real data example are provided.
翻译:我们认为,在一大批因果时间序列模型中,其中包括AR(美元/美元/美元/美元)、ARCH(美元/美元/美元/美元)、TARCH(美元/美元/美元/美元)、ARMA-GARCH等,都是一种流行病变化点的检测。 根据高西亚参数的准最大可能性估计值提出了测试统计数据,表明在没有任何变化的假设无效情况下,该测试统计数据与两个布朗桥的差幅相匹配,在流行病替代品下,该数据与无限性相异。提供了模拟和真实数据实例的数值结果。