Building a socially intelligent agent involves many challenges, one of which is to track the agent's mental state transition and teach the agent to make rational decisions guided by its utility like a human. Towards this end, we propose to incorporate a mental state parser and utility model into dialogue agents. The hybrid mental state parser extracts information from both the dialogue and event observations and maintains a graphical representation of the agent's mind; Meanwhile, the utility model is a ranking model that learns human preferences from a crowd-sourced social commonsense dataset, Social IQA. Empirical results show that the proposed model attains state-of-the-art performance on the dialogue/action/emotion prediction task in the fantasy text-adventure game dataset, LIGHT. We also show example cases to demonstrate: (\textit{i}) how the proposed mental state parser can assist agent's decision by grounding on the context like locations and objects, and (\textit{ii}) how the utility model can help the agent make reasonable decisions in a dilemma. To the best of our knowledge, we are the first work that builds a socially intelligent agent by incorporating a hybrid mental state parser for both discrete events and continuous dialogues parsing and human-like utility modeling.
翻译:建设社会智能剂涉及许多挑战,其中之一是跟踪该剂的心理状态过渡,并教导该剂根据人类的实用性来做出理性决定。为此,我们提议在对话剂中加入一个精神状态分析器和实用模型。混合精神状态分析器从对话和事件观测中提取信息,并保持该剂思想的图形代表;同时,该实用模型是一个排序模型,从众源社会常识数据集(Science IQA)中学习人类偏好,其中之一是跟踪该剂的心理状态转变,并教导该剂以其像人类一样的实用性能来做出合理的决定。 经验结果表明,拟议的模型在对话/行动/感官预测任务上达到了最先进的表现。为此,我们提议在幻想的文本冒险游戏数据集(Light)中引入一个精神状态分析器。我们还展示一些实例来证明:(\textit{i}拟议的精神状态分析器如何通过定位和物体等背景来帮助该剂做出决策,以及( textitit{ii} 实用性模型如何帮助该剂在两难中做出合理的决定。根据我们的知识,我们所了解的最佳模式,我们只是建立一个混合的混合性工具对话模式和不断构建一个混合的人类智能分子。