The use of LLMs as automated judges ("LLM-as-a-judge") is now widespread, yet standard judges suffer from a multitude of reliability issues. To address these challenges, we introduce Verdict, an open-source library for scaling judge-time compute to enhance the accuracy, reliability, and interpretability of automated evaluators. Verdict leverages the composition of modular reasoning units -- such as verification, debate, and aggregation -- and increased inference-time compute to improve LLM judge quality. Across a variety of challenging tasks such as content moderation, fact-checking, and hallucination detection, Verdict judges achieve state-of-the-art (SOTA) or near-SOTA performance, surpassing orders-of-magnitude larger fine-tuned judges, prompted judges, and reasoning models. Ultimately, we hope Verdict serves as a useful framework for researchers and practitioners building scalable, interpretable, and reliable LLM-based evaluators.
翻译:暂无翻译