Reducing energy consumption is crucial to reduce the human debt's with regard to our planet. Therefore most companies try to reduce their energetic consumption while taking care to preserve the service delivered to their customers. To do so, a service provider (SP) typically downscale or shutdown part of its infrastructure in periods of low-activity where only few customers need the service. However an SP still needs to maintain part of its infrastructure "on", which still requires significant energy. For example a mobile national operator (MNO) needs to maintain most of its radio access network (RAN) active. Could an SP do better by cooperating with other SPs who would temporarily support its users, thus allowing it to temporarily shut down its infrastructure, and then reciprocate during another low-activity period? To answer this question, we investigated a novel collaboration framework based on multi-agent reinforcement learning (MARL) allowing negotiations between SPs as well as trustful reports from a distributed ledger technology (DLT) to evaluate the amount of energy being saved. We leveraged it to experiment three different sets of rules (free, recommended, or imposed) regulating the negotiation between multiple SPs (3, 4, 8, or 10). With respect to four cooperation metrics (efficiency, safety, incentive-compatibility, and fairness), the simulations showed that the imposed set of rules proved to be the best mode.
翻译:减少能源消耗对于减少全球人类债务至关重要。 因此, 大部分公司都试图减少其高能消费,同时注意保护向客户提供的服务。 为了做到这一点, 服务提供商(SP)通常在低活动期减少或关闭其基础设施,因为只有很少的客户需要这种服务。 但是, SP仍然需要保持其基础设施的一部分“在”......,这仍然需要大量能源。 例如, 移动国家运营商(MNO)需要维持其大部分无线电接入网络(RAN)的运行。 一个移动国家运营商(MNO) 能够做更好的工作,与其他将暂时支持其用户的SP合作,从而允许其暂时关闭基础设施,然后在另一个低活动期进行回报? 为了回答这个问题,我们调查了一个基于多剂强化学习的新式合作框架(MARL),允许SP之间的谈判以及分布式分类技术(DLT)的可靠报告来评估所节省的能源量。 我们利用它来试验三套不同的规则(自由、 建议或强制实施), 以便暂时支持其用户, 从而允许其暂时关闭基础设施,然后在另一个低活动期间对基础设施进行回报? 我们调查了一个新的合作框架, 。 为了遵守四个标准( ) 的公平性( ) 证明了( ) 安全性( ) ) 标准( ) 的公平性( ),,,, 证明了性( 以 ) 以 ), 以 以 以 以 以 以 遵守 的 的 的 遵守 的 的 的 的 的 的 的 的 的 的 ) 的 的 的 的 。