In many real-world applications, one object (e.g., image) can be represented or described by multiple instances (e.g., image patches) and simultaneously associated with multiple labels. Such applications can be formulated as multi-instance multi-label learning (MIML) problems and have been extensively studied during the past few years. Existing MIML methods are useful in many applications but most of which suffer from relatively low accuracy and training efficiency due to several issues: i) the inter-label correlations (i.e., the probabilistic correlations between the multiple labels corresponding to an object) are neglected; ii) the inter-instance correlations cannot be learned directly (or jointly) with other types of correlations due to the missing instance labels; iii) diverse inter-correlations (e.g., inter-label correlations, inter-instance correlations) can only be learned in multiple stages. To resolve these issues, a new single-stage framework called broad multi-instance multi-label learning (BMIML) is proposed. In BMIML, there are three innovative modules: i) an auto-weighted label enhancement learning (AWLEL) based on broad learning system (BLS); ii) A specific MIML neural network called scalable multi-instance probabilistic regression (SMIPR); iii) Finally, an interactive decision optimization (IDO). As a result, BMIML can achieve simultaneous learning of diverse inter-correlations between whole images, instances, and labels in single stage for higher classification accuracy and much faster training time. Experiments show that BMIML is highly competitive to (or even better than) existing methods in accuracy and much faster than most MIML methods even for large medical image data sets (> 90K images).


翻译:在许多真实世界应用程序中,一个对象(例如图像)可以由多个实例(例如图像补丁)来代表或描述,并同时与多个标签相关。这些应用程序可以作为多因子多标签学习(MIML)问题来形成,并在过去几年中进行了广泛研究。现有的MIML方法在许多应用中非常有用,但由于一些问题,其中多数具有相对较低的精确度和培训效率。i) 标签间的相关性(例如,与一个对象相对应的多个标签的图像之间的概率性相关性被忽略;ii) 无法直接(或联合)学习与因缺失实例标签而导致的其他类型关联的精确性相关性;iii 现有的MIML方法在多个应用中是有用的,但是由于以下几个问题,这些方法中大多数都存在相对较低的精确度和培训效率:i) i) i- orialical or milalal i-lational mailal i-loral milal i-loral lailal i-loral i) a lax lais mal lacial lais mal lais mal lax a mal lacial lais mal a mal a mal a mal a mess mess mal a mal a mal a mal mal mal a mal a mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess mess m

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员