Solving constrained nonlinear optimization problems (CNLPs) is a longstanding problem that arises in various fields, e.g., economics, computer science, and engineering. We propose optimization-informed neural networks (OINN), a deep learning approach to solve CNLPs. By neurodynamic optimization methods, a CNLP is first reformulated as an initial value problem (IVP) involving an ordinary differential equation (ODE) system. A neural network model is then used as an approximate solution for this IVP, with the endpoint being the prediction to the CNLP. We propose a novel training algorithm that directs the model to hold the best prediction during training. In a nutshell, OINN transforms a CNLP into a neural network training problem. By doing so, we can solve CNLPs based on deep learning infrastructure only, without using standard optimization solvers or numerical integration solvers. The effectiveness of the proposed approach is demonstrated through a collection of classical problems, e.g., variational inequalities, nonlinear complementary problems, and standard CNLPs.
翻译:解决限制的非线性优化问题(CNLPs)是一个长期存在的问题,出现在各个领域,如经济学、计算机科学和工程等。我们提出优化知情神经网络(OINN),这是解决CNLP的深层学习方法。通过神经动力优化方法,一个国家CNLP最初被重新确定为最初的价值问题(IVP),涉及普通差异方程(ODE)系统。随后将神经网络模型用作该IVP的大致解决办法,其终点是预测国家空间优化方案。我们建议采用一种新的培训算法,指导模型在培训期间进行最佳预测。在坚果中,OINN将一个CNLP转化为神经网络培训问题。这样,我们只能通过深层学习基础设施解决CNLPs,而不使用标准的优化解答器或数字整合解答器。通过收集经典问题,例如差异性不平等、非线性互补问题和标准的CNLPs,可以证明拟议方法的有效性。