Multi-modal Large Language Model (MLLM) refers to a model expanded from a Large Language Model (LLM) that possesses the capability to handle and infer multi-modal data. Current MLLMs typically begin by using LLMs to decompose tasks into multiple subtasks, then employing individual pre-trained models to complete specific subtasks, and ultimately utilizing LLMs to integrate the results of each subtasks to obtain the results of the task. In real-world scenarios, when dealing with large projects, it is common practice to break down the project into smaller sub-projects, with different teams providing corresponding solutions or results. The project owner then decides which solution or result to use, ensuring the best possible outcome for each subtask and, consequently, for the entire project. Inspired by this, this study considers selecting multiple pre-trained models to complete the same subtask. By combining the results from multiple pre-trained models, the optimal subtask result is obtained, enhancing the performance of the MLLM. Specifically, this study first selects multiple pre-trained models focused on the same subtask based on distinct evaluation approaches, and then invokes these models in parallel to process input data and generate corresponding subtask results. Finally, the results from multiple pre-trained models for the same subtask are compared using the LLM, and the best result is chosen as the outcome for that subtask. Extensive experiments are conducted in this study using GPT-4 annotated datasets and human-annotated datasets. The results of various evaluation metrics adequately demonstrate the effectiveness of the proposed approach in this paper.
翻译:暂无翻译