In recent years, Hyperspectral Imaging (HSI) has become a powerful source for reliable data in applications such as remote sensing, agriculture, and biomedicine. However, hyperspectral images are highly data-dense and often benefit from methods to reduce the number of spectral bands while retaining the most useful information for a specific application. We propose a novel band selection method to select a reduced set of wavelengths, obtained from an HSI system in the context of image classification. Our approach consists of two main steps: the first utilizes a filter-based approach to find relevant spectral bands based on a collinearity analysis between a band and its neighbors. This analysis helps to remove redundant bands and dramatically reduces the search space. The second step applies a wrapper-based approach to select bands from the reduced set based on their information entropy values, and trains a compact Convolutional Neural Network (CNN) to evaluate the performance of the current selection. We present classification results obtained from our method and compare them to other feature selection methods on two hyperspectral image datasets. Additionally, we use the original hyperspectral data cube to simulate the process of using actual filters in a multispectral imager. We show that our method produces more suitable results for a multispectral sensor design.


翻译:近年来,超光谱成像(HSI)已成为遥感、农业和生物医学等应用应用方面可靠数据的有力来源。然而,超光谱图像数据密度高,往往受益于减少光谱波段数量的方法,同时保留最有用的具体应用信息。我们建议采用新型波段选择方法,从高光谱成像分类系统中从高光谱成像系统中选取一组减少的波长。我们的方法由两个主要步骤组成:第一个步骤利用基于过滤法的方法,在一个波段及其邻居之间的对焦线分析的基础上找到相关的光谱波段。这一分析有助于删除多余的波段,并大大减少搜索空间。第二个步骤是采用基于包装法的方法,根据信息酶值从已减少的波段中选择频段,同时从已减少的频段中保留最有用的信息。我们建议采用一个紧凑的波段带选择方法,从高光谱神经网络(CNN)来评估当前选择的性能。我们从我们的方法中得出分类结果,并将其与两个超光谱图像数据集的其他特征选择方法进行比较。此外,我们使用原超光谱数据基质数据立来模拟利用实际的甚光谱感光谱传感器设计方法,在多光谱图图像中模拟中模拟过程。我们制作方法,以制作一个更适当的甚光谱感光谱摄影。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
综述:DenseNet—Dense卷积网络(图像分类)
专知
85+阅读 · 2018年11月26日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
综述:DenseNet—Dense卷积网络(图像分类)
专知
85+阅读 · 2018年11月26日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员