In the past decades, great progress has been made in the field of optical and particle-based measurement techniques for experimental analysis of fluid flows. Particle Image Velocimetry (PIV) technique is widely used to identify flow parameters from time-consecutive snapshots of particles injected into the fluid. The computation is performed as post-processing of the experimental data via proximity measure between particles in frames of reference. However, the post-processing step becomes problematic as the motility and density of the particles increases, since the data emerges in extreme rates and volumes. Moreover, existing algorithms for PIV either provide sparse estimations of the flow or require large computational time frame preventing from on-line use. The goal of this manuscript is therefore to develop an accurate on-line algorithm for estimation of the fine-grained velocity field from PIV data. As the data constitutes a pair of images, we employ computer vision methods to solve the problem. In this work, we introduce a convolutional neural network adapted to the problem, namely Volumetric Correspondence Network (VCN) which was recently proposed for the end-to-end optical flow estimation in computer vision. The network is thoroughly trained and tested on a dataset containing both synthetic and real flow data. Experimental results are analyzed and compared to that of conventional methods as well as other recently introduced methods based on neural networks. Our analysis indicates that the proposed approach provides improved efficiency also keeping accuracy on par with other state-of-the-art methods in the field. We also verify through a-posteriori tests that our newly constructed VCN schemes are reproducing well physically relevant statistics of velocity and velocity gradients.


翻译:在过去几十年中,光学和粒子测量技术领域在实验性分析流体流动的实验性分析方面取得了巨大进展。粒子图像光学和粒子测量技术(PIV)被广泛用于确定从注入流体的粒子的时间-连续截图中流出的流动参数。计算是作为实验数据的后处理,通过参照框架中的粒子之间的近距离测量处理实验数据。然而,由于粒子的机能和密度在极端速度和数量上出现数据,处理后的步骤变得很成问题。此外,PIV的现有算法要么提供了流动的稀释估计,要么需要大量的计算时间框架来防止在线使用。因此,这一手稿的目标是开发准确的在线算法,用于估计从PIV数据中注入的微细分速度字段。由于数据构成一对图像的组合,我们采用了计算机视觉视觉方法来解决问题。在这项工作中,我们引入了一个适应问题的革命性神经网络,即量调调调频网络(VCN),我们最近为最终的光学流精确度估算提出了其他计算框架,防止在线使用。通过计算机流流流流中进行精确的精确的计算,最近对数据进行了精确的实地数据进行数据分析,通过对数据进行了彻底的实地分析,通过对数据进行数据进行数据的分析,从而对数据进行精确的实地数据进行精确的实地数据进行精确的模拟分析。通过模型分析,通过对数据进行精确的实地数据进行精确的计算。这个网络进行了彻底的测算。通过对数据分析,对数据进行精确的实地数据进行精确的测算。这个数据进行精确的实地数据分析,通过对数据分析,通过对数据进行彻底分析,从而对数据进行彻底的测算。通过对数据进行精确的计算方法进行了彻底数据分析,对数据分析,对数据进行彻底的测算。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月19日
Neural Image Captioning
Arxiv
5+阅读 · 2019年7月2日
Arxiv
4+阅读 · 2018年4月29日
VIP会员
相关资讯
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员