We consider the decentralized convex optimization problem, where multiple agents must cooperatively minimize a cumulative objective function, with each local function expressible as an empirical average of data-dependent losses. State-of-the-art approaches for decentralized optimization rely on gradient tracking, where consensus is enforced via a doubly stochastic mixing matrix. Construction of such mixing matrices is not straightforward and requires coordination even prior to the start of the optimization algorithm. This paper puts forth a primal-dual framework for decentralized stochastic optimization that obviates the need for such doubly stochastic matrices. Instead, dual variables are maintained to track the disagreement between neighbors. The proposed framework is flexible and is used to develop decentralized variants of SAGA, L-SVRG, SVRG++, and SEGA algorithms. Using a unified proof, we establish that the oracle complexity of these decentralized variants is $O(1/\epsilon)$, matching the complexity bounds obtained for the centralized variants. Additionally, we also present a decentralized primal-dual accelerated SVRG algorithm achieving $O(1/\sqrt{\epsilon})$ oracle complexity, again matching the bound for the centralized accelerated SVRG. Numerical tests on the algorithms establish their superior performance as compared to the variance-reduced gradient tracking algorithms.


翻译:我们考虑了分散的 convex 优化问题, 即多个代理商必须合作将累积性客观功能最小化, 每个本地功能都显示为基于数据的损失的经验平均数。 最先进的分散化优化方法依赖于梯度跟踪, 通过二重混合矩阵执行共识。 构建这种混合矩阵并不简单, 甚至在开始优化算法之前也需要协调。 本文为分散化的随机优化提供了一个原始双向框架, 从而避免了对此类双重随机化矩阵的需求。 相反, 保留了双重变量以跟踪邻居之间的分歧。 拟议的框架是灵活的, 用于开发SAGA、 L- SVRG、 SVRG+++ 和 SEGA 算法的分散化变体。 我们使用统一的证据, 确定这些分散化变体的复杂性是$( 1/\ epsilon), 与集中化变体获得的复杂度相符。 此外, 我们还展示了一种分散的原始组合加速型 SVRG 算法, 将其快速化的压值与高压级级的变压相匹配。

0
下载
关闭预览

相关内容

【AAAI2021】对话推理:上下文阅读理解提升回复生成
专知会员服务
43+阅读 · 2021年1月23日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
【综述】7篇非常简洁近期深度学习综述论文
专知会员服务
75+阅读 · 2019年12月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年2月16日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员